bFGF and aFGF induce membrane ruffling in breast cancer cells but not in normal breast epithelial cells: FGFR-4 involvement.
نویسندگان
چکیده
Acidic and basic fibroblast growth factors (aFGF and bFGF) are growth factors which may have a physiological role in the normal breast and in breast cancer. A study of the effects of aFGF and bFGF on a variety of breast cell lines and epithelial cells purified from normal breast organoids showed that whereas normal breast cells did not exhibit membrane ruffling in response to either of these growth factors, some breast cancer cell lines did. This difference was not due to lack of receptor since all the cell lines tested were mitogenically stimulated by bFGF. Dominant negative mutations of FGF receptor 3 (FGFR-3) and the small GTP-binding protein p21rac inhibited membrane ruffling, showing that receptor dimerization and phosphorylation and p21rac activation are prerequisites for membrane ruffling in response to aFGF and bFGF. Transient transfection of individual FGFRs into cos-7 cells showed that FGFR-1, FGFR-2 and FGFR-3 could not mediate a membrane ruffling response whereas FGFR-4 could. These studies elucidate one signalling mechanism of FGF and point to differences in the response of normal and cancer breast epithelial cells which may be important in cell motility.
منابع مشابه
Analysis of epithelial mesenchymal transition markers in breast cancer cells in response to stromal cell-derived factor 1
Introduction: Metastasis is the main cause of cancer death; however, the underlying mechanisms of metastasis are largely unknown. The chemokine of stromal cell-derived factor 1 (SDF1) and the process of epithelial mesenchymal transition (EMT), both have been declared as important factors to promote cancer metastasis; however, Conspicuously, the relation between them has not been recognized well...
متن کاملThe Difference of Expression of 18 Genes in Axillary Invasion and Vascular Invasion Compared to Control Samples in Breast Cancer
Background & Objective: Recent studies from gene profiling have revealed some genes that are overexpressed in the epithelial-mesenchymal transition (EMT) process and are responsible for its initiation and activation resulting in tumor progression and metastasis. The present study aimed to assess the role of genes involved in the EMT process and the association of these genes wi...
متن کاملEffect of 17-? Estradiol on the Expression of Inducible Nitric oxide Synthase in Parent and Tamoxifen Resistant T47D Breast Cancer Cells
Indirect evidence suggests that estrogen is involved in the etiology of breast cancer. Estrogen is also thought to modulate nitric oxide (NO) in human breast tumor tissue via regulation of inducible nitric oxide synthase (iNOS). Objectives of this study were to determine whether estradiol (E2) affects iNOS expression level in breast cancer cells and to study the effect of various concentrations...
متن کاملEffect of 17-? Estradiol on the Expression of Inducible Nitric oxide Synthase in Parent and Tamoxifen Resistant T47D Breast Cancer Cells
Indirect evidence suggests that estrogen is involved in the etiology of breast cancer. Estrogen is also thought to modulate nitric oxide (NO) in human breast tumor tissue via regulation of inducible nitric oxide synthase (iNOS). Objectives of this study were to determine whether estradiol (E2) affects iNOS expression level in breast cancer cells and to study the effect of various concentrations...
متن کاملThe Probiotic Bacteria Induce Apoptosis in Breast and Colon Cancer Cells: An Immunostimulatory Effect
Background: Uncontrolled cell proliferation and resistance to apoptosis are the main characteristics of cancer cells. Therefore, a substance with the capability to induce apoptosis in cancer cells could be known as an anti-cancer material. Probiotics are useful microorganisms that are crucial for the host’s health.Materials and Methods: In the present stu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 306 ( Pt 2) شماره
صفحات -
تاریخ انتشار 1995